New insights into breast cancer spread could yield better tests and treatments

A study combining tumor cells from patients with breast cancer with a laboratory model of blood vessel lining provides the most compelling evidence so far that a specific trio of cells is required for the spread of breast cancer. The findings could lead to better tests for predicting whether a woman’s breast cancer will spread and to new anti-cancer therapies. The study, led by researchers at the NCI-designated Albert Einstein Cancer Center and Montefiore Einstein Center for Cancer Care(MECCC), was published online today in Science Signaling.

According to the National Cancer Institute, more than 232,000 American women developed breast cancer last year and nearly 40,000 women died from the disease. It is the most common cancer among women in the United States. Most breast cancer deaths occur because the cancer has spread, or metastasized, which means that cells in the primary tumor have invaded blood vessels and traveled via the bloodstream to form tumors elsewhere in the body.

In earlier studies involving animal models and human cancer cell lines, researchers found that breast cancer spreads when three specific cells are in direct contact: an endothelial cell (a type of cell that lines the blood vessels), a perivascular macrophage (a type of immune cell found near blood vessels), and a tumor cell that produces high levels of Mena, a protein that enhances a cancer cell’s ability to spread. Where these three cells come in contact is where tumor cells can enter blood vessels - a site called a tumor microenvironment of metastasis, or TMEM. Tumors with high numbers of TMEM sites (i.e., they have a high TMEM “score”) were more likely to metastasize than were tumors with lower TMEM scores. In addition, the researchers found that cancer tissues high in a form of Mena called MenaINV were especially likely to metastasize. (MenaINV refers to the invasive form of Mena.)

“Those studies revealed new insights into how cancer might spread, but they didn’t necessarily show what is happening in patients,” said study leader Maja Oktay, M.D., Ph.D., associate professor of pathology http://www.einstein.yu.edu/departments/pathology/) at (Albert Einstein College of Medicine Yeshiva University and attending cytopathologist at Montefiore.

A study combining tumor cells from patients with breast cancer with a laboratory model of blood vessel lining provides the most compelling evidence so far that a specific trio of cells is required for the spread of breast cancer. The findings could lead to better tests for predicting whether a woman’s breast cancer will spread and to new anti-cancer therapies. The study, led by researchers at the NCI-designated Albert Einstein Cancer Center and Montefiore Einstein Center for Cancer Care(MECCC), was published online today in Science Signaling.

According to the National Cancer Institute, more than 232,000 American women developed breast cancer last year and nearly 40,000 women died from the disease. It is the most common cancer among women in the United States. Most breast cancer deaths occur because the cancer has spread, or metastasized, which means that cells in the primary tumor have invaded blood vessels and traveled via the bloodstream to form tumors elsewhere in the body.

New insights into breaSt cancer spread could yield better tests and treatments In earlier studies involving animal models and human cancer cell lines, researchers found that breast cancer spreads when three specific cells are in direct contact: an endothelial cell (a type of cell that lines the blood vessels), a perivascular macrophage (a type of immune cell found near blood vessels), and a tumor cell that produces high levels of Mena, a protein that enhances a cancer cell’s ability to spread. Where these three cells come in contact is where tumor cells can enter blood vessels—a site called a tumor microenvironment of metastasis, or TMEM. Tumors with high numbers of TMEM sites (i.e., they have a high TMEM “score”) were more likely to metastasize than were tumors with lower TMEM scores. In addition, the researchers found that cancer tissues high in a form of Mena called MenaINV were especially likely to metastasize. (MenaINV refers to the invasive form of Mena.)

“Those studies revealed new insights into how cancer might spread, but they didn’t necessarily show what is happening in patients,” said study leader Maja Oktay, M.D., Ph.D., associate professor of pathology http://www.einstein.yu.edu/departments/pathology/) at (Albert Einstein College of Medicine Yeshiva University and attending cytopathologist at Montefiore.

###

Kim Newman

.(JavaScript must be enabled to view this email address)
718-430-3101
Albert Einstein College of Medicine

Provided by ArmMed Media