Insulin - Diabetes Mellitus Treatment Regimens


  d. Long-acting insulins -
  (1) Insulin glargine -  This agent is an insulin analog in which the asparagine at position 21 of the A chain of the human insulin molecule is replaced by glycine and two arginines are added to the carboxyl terminal of the B chain. The arginines raise the isoelectric point of the molecule closer to neutral, making it more soluble in an acidic environment. In contrast, human insulin has an isoelectric point of pH 5.4. Insulin glargine is a clear insulin which, when injected into the neutral pH environment of the subcutaneous tissue, forms microprecipitates that slowly release the insulin into the circulation. It lasts for about 24 hours without any pronounced peaks and is given once a day to provide basal coverage. This insulin cannot be mixed with the other human insulins because of its acidic pH. When this insulin was given as a single injection at bedtime to type 1 patients, fasting hyperglycemia was better controlled when compared with bedtime NPH insulin. The clinical trials also suggest that there may be less nocturnal hypoglycemia with this insulin when compared with NPH insulin.

In one clinical trial involving type 2 patients, insulin glargine was associated with a slightly higher progression of retinopathy when compared with NPH insulin. The frequency was 7.5% with the analog and 2.7% with the NPH. This finding, however, was not seen in other clinical trials with this analog. Insulin glargine does have a sixfold greater affinity for IGF-1 receptor compared with the human insulin. There has also been a report that insulin glargine had increased mitogenicity compared with human insulin in a human osteosarcoma cell line. The significance of these observations is not yet clear. Because of lack of safety data, use of insulin glargine during pregnancy is not recommended.

  (2) Insulin detemir -  This agent is an insulin analog in which the tyrosine at position 30 of the β chain has been removed and a 14-C fatty acid chain (tetradecanoic acid) is attached to the lysine at position 29 by acylation. The fatty acid chain makes the molecule more lipophilic than native insulin and the addition of zinc stabilizes the molecule and leads to formation of hexamers. After injection, self-association at the injection site and albumin binding in the circulation via the fatty acid side chain, leads to slower distribution to peripheral target tissues and prolonged duration of action. The affinity of insulin determir is fourfold to fivefold lower than that of human soluble insulin and therefore the U100 formulation of insulin detemir has an insulin concentration of 2400 nmol/mL compared with 600 nmol/mL for NPH. The duration of action for insulin detemir is about 17 hours at therapeutically relevant doses. It is recommended that the insulin be injected once or twice a day to achieve a stable basal coverage. This insulin has been reported to have lower within-subject pharmacodynamic variability compared with NPH insulin and insulin glargine. In vitro studies do not suggest any clinically relevant albumin binding interactions between insulin detemir and fatty acids or protein-bound drugs. Since there is a vast excess (~400,000) of albumin binding sites available in plasma per insulin detemir molecule, it is unlikely that hypoalbuminemic disease states will affect the ratio of bound to free insulin detemir.

  e. Mixtures of insulin -  Since intermediate insulins require several hours to reach adequate therapeutic levels, their use in patients with type 1 diabetes requires supplements of regular or rapid-acting insulin analogs preprandially. For convenience, regular or rapid-acting insulin analogs and NPH insulin may be mixed together in the same syringe and injected subcutaneously in split dosage before breakfast and supper. It is recommended that the regular insulin or rapid-acting insulin analog be withdrawn first, then the NPH insulin and that the injection be given immediately after loading the syringe. Stable premixed insulins (70% NPH and 30% regular or 50% of each) are available as a convenience to patients who have difficulty mixing insulin because of visual problems or impairment of manual dexterity. Premixed preparations of insulin lispro and NPH insulins are unstable because of exchange of insulin lispro with the human insulin in the protamine complex. Consequently, the soluble component becomes over time a mixture of regular and insulin lispro at varying ratios. In an attempt to remedy this, an intermediate insulin composed of isophane complexes of protamine with insulin lispro was developed called NPL (neutral protamine lispro). This insulin has the same duration of action as NPH insulin. Premixed combinations of NPL and insulin lispro (eg, 75:25, 50:50, and 25:75 of NPL:insulin lispro) have been tested. Both 75% NPL/25% insulin lispro mixture (Humalog Mix 75/25) and 50% NPL/50% insulin lispro mixture (Humalog Mix 50/50) are available for clinical use. Similarly, a 70% insulin aspart protamine/30% insulin aspart (NovoLogMix 70/30) is available. The main advantages of these mixtures is that they can be given within 15 minutes of starting a meal and they are superior in controlling the postprandial glucose rise after a carbohydrate rich meal. These benefits have not translated into improvements in HbA1c levels when compared with the usual 70% NPH/30% regular mixture.
The longer-acting insulin analogs cannot be mixed with either regular insulin or the rapid-acting insulin analogs.


Page 3 of 4« First 1 2 3 4 Last » Next »

Provided by ArmMed Media